1. Coupled Dynamic Response on a 6 MW Spar-Type Floating Offshore Wind Turbine Under Extreme Conditions
- Author
-
YANG Jie, HE Yanping, MENG Long, ZHAO Yongsheng, and WU Haoyu
- Subjects
floating offshore wind turbine ,model test ,numerical simulation ,coupled dynamic response ,prediction of ultimate load ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Chemical engineering ,TP155-156 ,Naval architecture. Shipbuilding. Marine engineering ,VM1-989 - Abstract
To realize the practical scale application of the spar-type floating offshore wind turbine (FOWT) in the medium depth sea areas, a novel 6 MW spar-type floating offshore wind turbine is analyzed by model test and numerical simulation under extreme conditions. The response of main freedom degrees, the mooring tense and the stress at the danger point are explored by a 1∶65.3 scale model at the State Key Laboratory of Ocean Engineering in Shanghai JiaoTong University. Coupled motion response of the spar-type floating wind turbine is calculated by using numerical simulation software in time domain. The results of the numerical simulation and model test are compared and analyzed in time and frequency domain. The maximum deviation between numerical simulation and model test is less than 12%, which shows that the numerical simulation results are in good agreement with the model test results. The dynamic response energy of the FOWT is mainly concentrated at low frequency and wave frequency. Moreover, the whole FOWT system has an excellent survivability under extreme conditions. Finally, the ultimate load of the wind turbine is predicted, which provides the necessary theoretical basis and calculation parameters for the structural strength calculation.
- Published
- 2021
- Full Text
- View/download PDF