1. [Identification and pathogenicity prediction of a novel GLB1 variant c.101T>C (p.Ile34Thr) in an infant with GM1 gangliosidosis].
- Author
-
Lan XR, Qiu JW, Li H, Cai XR, and Song YZ
- Subjects
- Diffusion Tensor Imaging, Female, Humans, Infant, Mutation, Virulence, Gangliosidosis, GM1 genetics, beta-Galactosidase genetics
- Abstract
GM1 gangliosidosis is an autosomal recessive disorder caused by galactosidase beta1 (GLB1) gene variants which affect the activity of β-galactosidase (GLB). GLB dysfunction causes abnormalities in the degradation of GM1 and its accumulation in lysosome. This article reports the clinical and genetic features of a child with GM1 gangliosidosis. The girl, aged 2 years and 5 months, was referred to the hospital due to motor developmental regression for more than one year. Physical examination showed binocular deflection and horizontal nystagmus, but no abnormality was found on fundoscopy. The girl had increased muscular tone of the extremities, limitation of motion of the elbow, knee, and ankle joints, and hyperactive patellar tendon reflex. Blood biochemical examination showed a significant increase in aspartate aminotransferase. The 24-hour electroencephalographic monitoring detected frequent seizure attacks and diffuse θ wave activity, especially in the right hemisphere. Head magnetic resonance imaging showed thinner white matter in the periventricular region and diffuse high T2WI signal with unclear boundary. Three-dimensional reconstruction of white matter fiber tracts by diffusion tensor imaging showed smaller and thinner white matter fiber tracts, especially in the right hemisphere. Genetic analysis showed that the girl had compound heterozygous mutations of c.446C>T (p.Ser149Phe) and c.101T>C (p.Ile34Thr) in the GLB1 gene from her parents, among which c.101T>C (p.Ile34Thr) had not been reported in the literatures. The girl was finally diagnosed with GM1 gangliosidosis. Her conditions were not improved after antiepileptic treatment and rehabilitation training for 2 months.
- Published
- 2019