1. [Investigation of the action mechanisms of poly-ADP-ribosylation in hexavalent chromium induced cell damage].
- Author
-
Li X, Cai J, Zhuang Z, Liu J, Xia B, Hu G, Li X, and Huang H
- Subjects
- Bronchi, Chromium, Cofilin 1, DNA Repair, Epithelial Cells, Humans, Tandem Mass Spectrometry, Cell Transformation, Neoplastic genetics, Glycoside Hydrolases deficiency, Glycoside Hydrolases physiology
- Abstract
Objective: To investigate the effect of poly-ADP-ribosylation in hexavalent chromium Cr(VI) induced cell damage., Methods: The study object, poly (ADP-ribose) glycohydrolase (PARG) deficient human bronchial epithelial cells (16HBE cells), was constructed previously by our research group. Normal 16HBE cells and PARG-deficient cells were treated with different doses of Cr (VI) for 24 h to compare the differences to Cr (VI) toxicity, meanwhile set up the solvent control group. On this basis, 5.0 µmol/L of Cr (VI) was selected as the exposure dose, after the exposure treatment, total proteins of both cells were extracted for two dimension fluorescence difference gel electrophoresis (2D-DIGE) separation, statistically significant differential protein spots were screened and identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS), and further validated by Western blot., Results: After Cr (VI) treatment, the survival rate of PARG-deficient cells was higher than normal 16HBE cells. When the doses reached up to 5.0 µmol/L, the survival rate of 16HBE cells and PARG-deficient cells were respectively (59.67 ± 6.43)% and (82.00 ± 6.25)%, the difference between which was significant (t = -4.32, P < 0.05). 18 protein spots were selected and successfully identified after 2D-DIGE comparison of differential proteins between normal 16HBE cells and PARG-deficient cells before and after exposure. The function of those proteins was involved in the maintenance of cell shape, energy metabolism, DNA damage repair and regulation of gene expression. The differential expression of cofilin-1 was successfully validated by Western blot. The expression level of cofilin-1 in the 16HBE cells increased after Cr (VI) exposure with the relative expression quantity of 1.41 ± 0.04 in treated group and 1.00 ± 0.01 in control group, the difference of which was statistically significant (t = -18.00, P < 0.05), while the expression level in PARG-deficient cells had no statistically significant difference (t = -8.61, P > 0.05)., Conclusion: Most of the identified differential proteins are closely related to tumorigenesis, suggesting that poly-ADP-ribosylation reaction may resist the cytotoxicity of Cr(VI) by inhibiting Cr (VI) induced tumorigenesis, which provides important reference data to clarify the mechanisms of poly-ADP-ribosylation in Cr (VI) induced cell damage.
- Published
- 2014