1. [Mechanism underlying photocatalyzed degradation of methyl orange by layered black phosphorus].
- Author
-
Han YQ, Lei L, Yang C, Zhang SY, Zhao Q, and Zhang XJ
- Subjects
- Azo Compounds, Wastewater, Ecosystem, Phosphorus
- Abstract
A large amount of azo dye wastewater is discharged into the environment, with serious risks to ecosystems and human health. Therefore, the development of treatment technology of azo dye wastewater was of practical significance. Photocatalytic methods showed promising application prospects due to easy to implement and effective. In this study, layered black phosphorus nanosheet (LBP) was used as a catalyst through liquid phase exfoliation method. Methyl orange (MO) was employed as a model azo dye to investigate the catalytic mechanism of LBP. The dominant transient species involved in the photocatalytic reaction was probed by quenching and fluorescence probe experiments. Degradation pathways of MO were proposed according to degradation products identified by the liquid chromatography-mass spectrometry. The results showed that degradation rate (k
obs ) of MO at acidic condition (pH=3.0) or alkaline condition (pH=11.0) was higher than that at neutral condition (pH=7.0). Degradation pathways of MO included that the azo bond was attacked by hydroxyl radicals (·OH) photogenerated by the LBP, and the intermediate products were further oxidized by ·OH to produce N, N-dimethyl-4-(2-p-phenylmethylhydrazine) aniline, 2-(dimethylamino)-5-((4(dimethylamino) phenyl) diazenyl) phenol and N, N-dimethyl-4-nitroaniline.- Published
- 2020
- Full Text
- View/download PDF