DNA methylation is one of the major epigenetic modifications. It is very important to the regulation of gene expression. In present study, an autoploidy series (2x, 3x and 4x) in watermelon (Citrullus lanatus) was constructed and MSAP (Methylation-Sensitive Amplification Polymorphism) analysis was conducted to elucidate the level and pattern of DNA methylation at CCGG sites in different ploidy watermelons. Totally, 1883 genetic loci were produced by 23 pairs of selective primers, of which 647, 655 and 581 sites were detected in diploid, autotriploid and autotetraploid, respectively. The methylation sites were 181, 150 and 159, and the corresponding total methylation ratios were 28.0%, 22.9% and 27.4% in 2x, 3x and 4x, respectively, of which the fully methylation sites were 121, 80 and 82, and the corresponding fully methylation ratios were 18.7%, 12.2% and 14.1%. Further analysis of the pattern of DNA methylation suggested that compared 4x with 2x, about half of detected sites (54.4%) shown changes of DNA methylation patterns. Similarly, compared 4x with 3x, 45.4% sites also shown changes of DNA methylation patterns. Moreover, the trend of DNA methylation adjustment mainly involved increase of DNA methylation levels in 4x. However, compared 3x with 2x or 4x, although the changes of DNA methylation pattern also widely occurred, which involved 41.6% (compared 3x with 2x) and 45.4% (compared 3x with 4x) sites, respectively, the trend of DNA methylation adjustment mainly involved decrease of DNA methylation levels in 3x. All these results indicated that DNA methylation events were widely existed in different ploidy watermelons. However, not only based on the total DNA methylation ratio or fully DNA methylation ratio, the results both implied that the DNA methylation levels were not closely associated with the autopolyploidy level in watermelon. Autotriploid watermelon shows obvious low level of DNA methylation. Analysis of DNA methylation patterns also suggested that the adjustment of DNA methylation patterns in autotriploid mainly involved demethylation events, implying the unusual characteristic of DNA methylation status in 3x watermelon. The present results are valuable to further explore the nature of triploid vigor and autopolyploidizaion in watermelon from the view of epigenetics.