1. [Mechanisms of recombinant adenovirus-mediated SD-HA fusion protein proliferation inhibition and induced apoptosis of K562 cells].
- Author
-
Huang Y, Zhang P, Du L, Gui M, Feng WL, and Peng Z
- Subjects
- Adenoviridae, Humans, K562 Cells, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Oncogene Proteins, Fusion, Phosphatidylinositol 3-Kinases, Apoptosis, Cell Proliferation
- Abstract
Objective: To investigate whether fusion protein SD-HA could regulate its downstream signaling molecule activity by competing with the phospho-BCR-ABL Y177 site, and its mechanisms to inhibit proliferation and induce apoptosis of K562 cells. Methods: Co-immunoprecipitation interaction technology analysis of fusion protein SD-HA functioned by potently binding to the phospho-BCR-ABL Y177 site, Ras, MAPK and Akt activities were observed in the Ad5F35-SD-HA-treated cells. Western blot analyses of SD-HA fusion protein on cell membrane receptor pathway to death cascade caspase-8, caspase-3 and PRAP were performed. Results: Exploration into the underlying mechanisms revealed that Ad5F35-SD-HA infection functioned by binding to the phospho-BCR-ABL Y177 site, which lead to a complex with Grb2. competitively disrupted the Grb2 SH2-phospho-BCR-ABL Y177 formation. The fusion protein SD-HA could reduce the activation of Ras and phosphorylation of MAPK (p-MAPK) and the expression level of p-ELK, inhibition of Ras-MAPK signaling pathway; SD-HA fusion protein could reduce p-Akt and Akt substrate p-GSK with inhibition of PI3K-Akt signaling pathway, thereby inhibiting the proliferation of K562 cells. Caspases-8-induced apoptosis signal could be activated by DED protein binding to DED domain of precursor caspases-8. Conclusions: The strategy of fusion protein SD-HA inhibiting-Y177 BCR-ABL and Grb2 binding could be used as a novel entry point for the treatment of chronic myeloid leukemia.
- Published
- 2018
- Full Text
- View/download PDF