This paper was aimed to establish screening methods of anaphylactoid reaction caused by safflower yellow for injection based on RBL-2 H3 cell degranulation model and mice model for acute anaphylactoid reaction,and evaluate the hypersensitivity caused by safflower yellow for injection from different batches. An in vitro cell model was used to keep the cells stimulated for an hour with different batches of safflower yellow for injection as the drug group,serum-free MEM medium as negative control group and 30 mg·L-1 C48/80 as positive control group respectively. The supernatant was then absorbed,and neutral red staining technique was used to detect the effect of safflower yellow injection on the degranulation of RBL-2 H3 cells with the positive cell rate of degranulation as the indicator.An in vivo model was established to validate the experimental results,and mice model for acute anaphylactoid reaction and ELISA method were adopted to detect the plasma histamine content,and screen the hypersensitivity caused by safflower yellow for injection at the animal level by using plasma histamine content as a test index. The results of the neutral red staining experiments showed that the positive control C48/80 could cause cell degranulation,and most of the cells were deeply stained. There was significant difference in positive cell rate between different batches of safflower yellow and positive control group. In the mice model for acute anaphylactoid reaction,it was found that the positive control C48/80 significantly increased the histamine content in the plasma of mice,while the safflower yellow in each batch did not cause a significant increase in plasma histamine( P<0. 000 1). The mechanism of anaphylactoid reaction is relatively complicated. This study was mainly based on the release of histamine and other active substances by degranulation of mast cells. No significant degranulation reaction of RBL-2 H3 cells induced by safflower yellow for injection was detected,nor was the plasma histamine level significantly increased in mice from the in vitro and in vivo aspects.