1. Metagenomic Evaluation of Bacteria from Voles.
- Author
-
Koskela KA, Kalin-Mänttäri L, Hemmilä H, Smura T, Kinnunen PM, Niemimaa J, Henttonen H, and Nikkari S
- Subjects
- Animals, Bacteria classification, Finland, Arvicolinae microbiology, Bacteria genetics, Bacteria isolation & purification, Genome, Bacterial, Metagenomics
- Abstract
Voles (Arvicolinae, Rodentia) are known carriers of zoonotic bacteria such as Bartonella spp. and Francisella tularensis. However, apart from F. tularensis, the bacterial microbiome of voles has not previously been determined in Finland and rarely elsewhere. Therefore, we studied liver samples from 61 voles using 16S ribosomal RNA gene PCR analysis, followed by Sanger sequencing. Twenty-three of these samples were also studied with tag-encoded pyrosequencing. The samples originated from 21 field voles (Microtus agrestis), 37 tundra voles (Microtus oeconomus), and 3 bank voles (Myodes glareolus). With the more conventional 16S rDNA PCR analysis, 90 (33%) of the recovered 269 sequence types could be identified to genus level, including Bartonella, Francisella, Mycoplasma, Anaplasma, and Acinetobacter in 31, 15, 9, 9, and 9 sequences, respectively. Seventy-five (28%) matched best with sequences of uncultured bacteria, of which 40/75 could be classified to the order Clostridiales and, more specifically, to families Lachnospiraceae and Ruminococcaceae. Pyrosequencing from 23 samples revealed comparable and similar results: clinically relevant bacterial families such as Mycoplasmataceae, Bartonellaceae, Anaplasmataceae, and Francisellaceae were recognized. These analyses revealed significant bacterial diversity in vole livers, consisting of distinct and constant sequence patterns reflecting bacteria found in the intestinal gut, but including some known zoonotic pathogens as well. The molecular bacterial sequence types determined with the two different techniques shared major similarities and verified remarkable congruency between the methods.
- Published
- 2017
- Full Text
- View/download PDF