151. Families of nodal curves on projective threefolds and their regularity via postulation of nodes.
- Author
-
Flaminio Flamini
- Subjects
- *
POLYNOMIALS , *THREEFOLDS (Algebraic geometry) , *CURVES , *MATHEMATICS - Abstract
The main purpose of this paper is to introduce a new approach to study families of nodal curves on projective threefolds. Precisely, given a smooth projective threefold $X$, a rank-two vector bundle $\mathcal{E}$ on $X$, and integers $k\geq 0$, $\delta >0 $, denote by ${\mathcal{V}}_{\delta} ({\mathcal{E}} (k))$ the subscheme of ${\mathbb{P}}(H^0({\mathcal{E}}(k)))$ parametrizing global sections of ${\mathcal{E}}(k)$ whose zero-loci are irreducible $\delta$-nodal curves on $X$. We present a new cohomological description of the tangent space $T_{[s]}({\mathcal{V}}_{\delta} ({\mathcal{E}} (k)))$ at a point $[s]\in {\mathcal{V}}_{\delta} ({\mathcal{E}} (k))$. This description enables us to determine effective and uniform upper bounds for $\delta$, which are linear polynomials in $k$, such that the family ${\mathcal{V}}_{\delta} ({\mathcal{E}} (k))$ is smooth and of the expected dimension ({\em regular}, for short). The almost sharpness of our bounds is shown by some interesting examples. Furthermore, when $X$ is assumed to be a Fano or a Calabi-Yau threefold, we study in detail the regularity property of a point $[s] \in {\mathcal{V}}_{\delta} ({\mathcal{E}} (k))$ related to the postulation of the nodes of its zero-locus $C = V(s) \subset X$. Roughly speaking, when the nodes of $C$ are assumed to be in general position either on $X$, or on an irreducible divisor of $X$ having at worst log-terminal singularities or to lie on a l.c.i. and subcanonical curve in $X$, we find upper bounds on $\delta$ which are, respectively, cubic, quadratic and linear polynomials in $k$ ensuring the regularity of ${\mathcal{V}}_{\delta} ({\mathcal{E}} (k))$ at $[s]$. Finally, when $X= \mathbb{P}^3$, we also discuss some interesting geometric properties of the curves given by sections parametrized by ${\mathcal{V}}_{\delta} ({\mathcal{E}} \otimes \mathcal{O}_X(k))$. [ABSTRACT FROM AUTHOR]
- Published
- 2003
- Full Text
- View/download PDF