Benthic dinoflagellates of the genus Prorocentrum are common in tropical and subtropical water and several species produce phycotoxins potentially involved in human toxic outbreaks. The toxic dinoflagellate Prorocentrum borbonicum collected at La Réunion Island (France) was cultured in laboratory. A crude extract of the organism displayed significant toxicity in mice characterized by progressive limb paralysis, severe dyspnea, and death, and the toxicity was retained, after partition, in the extract's butanol-soluble fraction (BSF). Electrophysiological experiments characterizing the fraction's effect on isolated vertebrate neuromuscular preparations revealed that it depolarizes the muscle membrane and reduces the driving force for endplate potentials (EPPs) evoked by nerve stimulation, blocking directly- and indirectly-elicited muscle twitches. The depolarization induced by P. borbonicum BSF was not due to Na(+) influx through voltage-dependent Na(+) channels, since tetrodotoxin neither prevented nor suppressed the depolarization. However, ouabain, a specific ligand of the Na/K ATPase, reduced the depolarization. These results suggest the presence of palytoxin-like compounds in the fraction. HPLC-MS and MS/MS analysis showed the presence of several toxins having identical UV absorbance, among which two new isomeric toxins, borbotoxin-A and -B, of molecular mass of 1037.6 Da were isolated. The purified borbotoxin-A, had no effect on the resting membrane potential of muscle fibers and did not affect directly-elicited muscle twitches. However, the toxin reduced nerve-evoked muscle twitches, in a dose-dependent manner, reduced EPPs' amplitudes and completely blocked miniature endplate potentials. These observations suggest that the main action of borbotoxin-A is to block post-synaptic nicotinic ACh receptors.