1. The determination of carrier lifetimes and associated mobility magnitudes using photoconductivity recovery dynamics in thin-film amorphous semiconductors.
- Author
-
Goldie, D.M.
- Subjects
- *
AMORPHOUS semiconductors , *PHOTOCONDUCTIVITY , *DATA recovery - Abstract
Abstract The extraction of trap-limited mobility information using photoconductivity relaxation dynamics in thin-film amorphous semiconductors is evaluated. Simulated photoconductivity dynamics suggest that free carrier decay is characterised by a spectrum of recombination lifetimes, where the spectra are sensitive to the underlying distribution of shallow trap densities and the experimental photoconductivity generation conditions employed. Weighted averaging of the spectral lifetimes is found to return trap-limited lifetime estimates which agree to within 5% of the lifetime values expected from free-to-trapped carrier ratios established under steady-state photoconductivity conditions. The averaged spectral lifetimes may consequently be used with mobility-lifetime magnitudes to determine the associated trap-limited mobility. The analysis procedure is evaluated using photoconductivity data obtained from a set of a-Si:H films deposited over a range of substrate temperatures. Highlights • Photocurrent recovery dynamics yield a spectrum of free-carrier recombination times • Trap-limited mobility values may be determined from the recombination time spectra • Intervals to achieve 1/3 photocurrent recovery approximate the recombination time • a-Si:H recovery data suggests potential fluctuations suppress mobility magnitudes [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF