1. The cAMP binding protein Epac modulates Ca2+sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes
- Author
-
Mélanie Métrich, María Fernández-Velasco, Frank Lezoualc'h, Romain Perrier, Jérôme Leroy, Alexandre Lucas, Sylvain Richard, Ana María Gómez, Eric Morel, Rodolphe Fischmeister, Laetitia Pereira, and Jean-Pierre Benitah
- Subjects
0303 health sciences ,Voltage-dependent calcium channel ,Physiology ,Ryanodine receptor ,030204 cardiovascular system & hematology ,Biology ,3. Good health ,Cell biology ,03 medical and health sciences ,0302 clinical medicine ,Ca2+/calmodulin-dependent protein kinase ,Second messenger system ,CAMP binding ,Patch clamp ,Protein kinase A ,030304 developmental biology ,Calcium signaling - Abstract
cAMP is a powerful second messenger whose known general effector is protein kinase A (PKA). The identification of a cAMP binding protein, Epac, raises the question of its role in Ca(2+) signalling in cardiac myocytes. In this study, we analysed the effects of Epac activation on Ca(2+) handling by using confocal microscopy in isolated adult rat cardiomyocytes. [Ca(2+)](i) transients were evoked by electrical stimulation and Ca(2+) sparks were measured in quiescent myocytes. Epac was selectively activated by the cAMP analogue 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT). Patch-clamp was used to record the L-type calcium current (I(Ca)), and Western blot to evaluate phosphorylated ryanodine receptor (RyR). [Ca(2+)](i) transients were slightly reduced by 10 microm 8-CPT (F/F(0): decreased from 4.7 +/- 0.5 to 3.8 +/- 0.4, P < 0.05), an effect that was boosted when cells were previously infected with an adenovirus encoding human Epac. I(Ca) was unaltered by Epac activation, so this cannot explain the decreased [Ca(2+)](i) transients. Instead, a decrease in the sarcoplasmic reticulum (SR) Ca(2+) load underlies the decrease in the [Ca(2+)](i) transients. This decrease in the SR Ca(2+) load was provoked by the increase in the SR Ca(2+) leak induced by Epac activation. 8-CPT significantly increased Ca(2+) spark frequency (Ca(2+) sparks s(-1) (100 microm)(-1): from 2.4 +/- 0.6 to 6.9 +/- 1.5, P < 0.01) while reducing their amplitude (F/F(0): 1.8 +/- 0.02 versus 1.6 +/- 0.01, P < 0.001) in a Ca(2+)/calmodulin kinase II (CaMKII)-dependent and PKA-independent manner. Accordingly, we found that Epac increased RyR phosphorylation at the CaMKII site. Altogether, our data reveal a new signalling pathway by which cAMP governs Ca(2+) release and signalling in cardiac myocytes.
- Published
- 2007
- Full Text
- View/download PDF