1. DNA-Templated Aggregates of Strongly Coupled Cyanine Dyes: Nonradiative Decay Governs Exciton Lifetimes
- Author
-
Gregory D. Scholes, Ryan D. Pensack, Bernard Yurke, Nirmala Kandadai, William B. Knowlton, Donald L. Kellis, Zi S. D. Toa, Jonathan S. Huff, Allison Christy, and Paul H. Davis
- Subjects
Time Factors ,Materials science ,Exciton ,Dimer ,DNA ,02 engineering and technology ,Carbocyanines ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Internal conversion (chemistry) ,01 natural sciences ,Fluorescence ,0104 chemical sciences ,chemistry.chemical_compound ,Spectrometry, Fluorescence ,chemistry ,Chemical physics ,Covalent bond ,Picosecond ,Ultrafast laser spectroscopy ,General Materials Science ,Physical and Theoretical Chemistry ,Cyanine ,0210 nano-technology ,Fluorescent Dyes - Abstract
Molecular excitons are used in a variety of applications including light harvesting, optoelectronics, and nanoscale computing. Controlled aggregation via covalent attachment of dyes to DNA templates is a promising aggregate assembly technique that enables the design of extended dye networks. However, there are few studies of exciton dynamics in DNA-templated dye aggregates. We report time-resolved excited-state dynamics measurements of two cyanine-based dye aggregates, a J-like dimer and an H-like tetramer, formed through DNA-templating of covalently attached dyes. Time-resolved fluorescence and transient absorption indicate that nonradiative decay, in the form of internal conversion, dominates the aggregate ground state recovery dynamics, with singlet exciton lifetimes on the order of tens of picoseconds for the aggregates versus nanoseconds for the monomer. These results highlight the importance of circumventing nonradiative decay pathways in the future design of DNA-templated dye aggregates.
- Published
- 2019
- Full Text
- View/download PDF