Adsorption of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on the Ge(001) surface was studied using scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and the density-functional theory (DFT) calculations. Only single adsorption configuration of the PTCDA molecule was observed at low coverages on the Ge(001) at room temperature, unlike on the Si(001) where several adsorption configurations were reported. This indicates that the PTCDA molecules on the Ge(001) were more mobile than those on the Si(001). Atomic structure of the adsorption configuration on the Ge(001) was determined by comparison between the STM experiments and the DFT calculations. Bias-dependent STM images, STS, and calculated projected density of state curves show nontrivial hybridization of molecular orbitals with surface states of the Ge substrate. Interactions of the PTCDA molecule with the Ge and the Si surfaces were in detail analyzed by the DFT calculation, considering five main competing contributions...