1. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
- Author
-
Dimitri Kosenkov, K. Birgitta Whaley, Dennis Barton, Abdulrahman Aldossary, Sam F. Manzer, Wojciech Skomorowski, Matthew Goldey, Ksenia B. Bravaya, Leif D. Jacobson, Gergely Kis, Anna I. Krylov, Aaditya Manjanath, Norm M. Tubman, Bang C. Huynh, Shane R. Yost, Barry D. Dunietz, Hainam Do, Sina Yeganeh, Shervin Fatehi, Stephen E. Mason, Warren J. Hehre, Sahil Gulania, Martin Head-Gordon, Alexander C. Paul, Jeffrey B. Neaton, István Ladjánszki, Matthias Schneider, Prashant Uday Manohar, Maximilian Scheurer, Simon A. Maurer, Adrian L. Dempwolff, Dmitry Zuev, Zachary C. Holden, Jan Wenzel, Eric J. Sundstrom, Phil Klunzinger, Jia Deng, Daniel S. Levine, Kristina D. Closser, David W. Small, Hanjie Jiang, Bernard R. Brooks, Alexandre Tkatchenko, Vale Cofer-Shabica, Xing Zhang, Nickolai Sergueev, Jonathan Thirman, Ádám Jász, Ethan Alguire, Keith V. Lawler, Chao-Ping Hsu, Saswata Dasgupta, Narbe Mardirossian, David Casanova, Pierpaolo Morgante, Andrew Behn, Vishikh Athavale, WanZhen Liang, Matthias Loipersberger, Arie Landau, Andreas Dreuw, Qingguo Feng, James R. Gayvert, Tomasz Adam Wesolowski, Thomas Kus, Alexander Zech, Daniel Lefrancois, Kirill Khistyaev, Oleg A. Vydrov, Marc P. Coons, Bushra Alam, Fenglai Liu, Alan D. Chien, Yu Zhang, Andreas W. Hauser, Stefanie A. Mewes, You Sheng Lin, Zheng Pei, Evgeny Epifanovsky, Run R. Li, Michael F. Herbst, Joseph Gomes, Thomas R. Furlani, Tim Stauch, Abel Carreras, Joonho Lee, Erum Mansoor, John M. Herbert, Yu-Chuan Su, Maxim V. Ivanov, Maximilian F. S. J. Menger, György Cserey, Ryan P. Steele, Yousung Jung, Anastasia O. Gunina, Vitaly A. Rassolov, Daniel S. Lambrecht, Zhen Tao, Fabijan Pavošević, Yves A. Bernard, Michael Diedenhofen, Igor Ying Zhang, Paul R. Horn, Hung Hsuan Lin, Roberto Peverati, William A. Goddard, Yihan Shao, Shirin Faraji, Pavel Pokhilko, Tarek Scheele, Andrew T.B. Gilbert, Triet Friedhoff, Dirk R. Rehn, Kaushik D. Nanda, Susi Lehtola, Jeng-Da Chai, Hugh G. A. Burton, Alexander A. Kunitsa, Qinghui Ge, Ádám Rák, Elliot Rossomme, Hyunjun Ji, Jing Kong, Kuan-Yu Liu, Adrian F. Morrison, Yi-Pei Li, Troy Van Voorhis, Nicholas J. Mayhall, Simon C. McKenzie, Sven Kähler, H. Lee Woodcock, Stefan Prager, Xintian Feng, Manuel Hodecker, Thomas-C. Jagau, Takashi Tsuchimochi, Peter Gill, Adrian W. Lange, Ryan M. Richard, Robert A. DiStasio, Kevin Carter-Fenk, Ying Zhu, Tim Kowalczyk, Joong Hoon Koh, Ilya Kaliman, Peter F. McLaughlin, John Parkhill, Gábor János Tornai, Caroline M. Krauter, Zhengting Gan, Eloy Ramos-Cordoba, Marcus Liebenthal, Donald G. Truhlar, Jiashu Liang, Joseph E. Subotnik, Arne Luenser, Nicole Bellonzi, Sonia Coriani, Andreas Klamt, Aleksandr V. Marenich, Shaama Mallikarjun Sharada, Zsuzsanna Koczor-Benda, Yuezhi Mao, Shannon E. Houck, Marta L. Vidal, Emil Proynov, C. William McCurdy, J. Wayne Mullinax, Mario Hernández Vera, Khadiza Begam, Alán Aspuru-Guzik, Jon Witte, Laura Koulias, Felix Plasser, Christopher J. Stein, Alec F. White, Jan-Michael Mewes, Romit Chakraborty, Ka Un Lao, Suranjan K. Paul, Teresa Head-Gordon, Karl Y Kue, Po Tung Fang, Zhi-Qiang You, Cristina E. González-Espinoza, Jie Liu, Diptarka Hait, Alan E. Rask, Phillip H.P. Harbach, Nicholas A. Besley, Kun Yao, Benjamin J. Albrecht, Benjamin Kaduk, Jae-Hoon Kim, Gergely Gidofalvi, A. Eugene DePrince, Thomas Markovich, Eric J. Berquist, Marc de Wergifosse, Alexis T. Bell, Christopher J. Cramer, Adam Rettig, Garrette Paran, Shan Ping Mao, Katherine J. Oosterbaan, Paul M. Zimmerman, Christian Ochsenfeld, J. Andersen, Magnus W. D. Hanson-Heine, Jörg Kussmann, Lyudmila V. Slipchenko, Alex J. W. Thom, Sebastian Ehlert, Atsushi Yamada, Srimukh Prasad Veccham, Kerwin Hui, Fazle Rob, Xunkun Huang, Bhaskar Rana, Sharon Hammes-Schiffer, Department of Chemistry, and Theoretical Chemistry
- Subjects
116 Chemical sciences ,GENERALIZED-GRADIENT-APPROXIMATION ,RAY-ABSORPTION SPECTRA ,FRAGMENT POTENTIAL METHOD ,General Physics and Astronomy ,Physics, Atomic, Molecular & Chemical ,010402 general chemistry ,Decomposition analysis ,01 natural sciences ,Quantum chemistry ,Software ,TRANSFER EXCITED-STATES ,DENSITY-FUNCTIONAL-THEORY ,DIAGRAMMATIC CONSTRUCTION SCHEME ,0103 physical sciences ,ddc:530 ,Physical and Theoretical Chemistry ,Graphics ,ENERGY DECOMPOSITION ANALYSIS ,Physics ,Science & Technology ,010304 chemical physics ,Chemistry, Physical ,business.industry ,Suite ,GAUSSIAN-BASIS SETS ,Physik (inkl. Astronomie) ,Modular design ,3. Good health ,0104 chemical sciences ,MOLECULAR-ORBITAL METHODS ,Chemistry ,Diagrammatic reasoning ,Physical Sciences ,Perturbation theory (quantum mechanics) ,business ,Software engineering ,SELF-CONSISTENT-FIELD - Abstract
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design. This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.
- Published
- 2021
- Full Text
- View/download PDF