1. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light
- Author
-
Christopher J. Gisriel, Gaozhong Shen, David A. Flesher, Vasily Kurashov, John H. Golbeck, Gary W. Brudvig, Muhamed Amin, Donald A. Bryant, and Department of Sciences
- Subjects
energy transfer ,photosynthesis ,cofactor assignment ,cryo-EM ,photosystem II ,chlorophyll ,far-red light photoacclimation ,Cell Biology ,PsbH ,electron transfer ,Molecular Biology ,Biochemistry ,cyanobacteria - Abstract
Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, the energy from light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400-700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700-800 nm), a process termed far-red light photoacclimation, or FaRLiP. During FaRLiP, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the complete dimeric complex has remained elusive. Here, we report the cryo-electron microscopy structure of a dimeric FRL-PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. Furthermore, the structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII to redirect energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL.
- Published
- 2023
- Full Text
- View/download PDF