1. Proteolytic processing of the receptor-type protein tyrosine phosphatase PTPBR7
- Author
-
Gönül, Dilaver, Rinske, van de Vorstenbosch, Céline, Tárrega, Pablo, Ríos, Rafael, Pulido, Karlijn, van Aerde, Jack, Fransen, and Wiljan, Hendriks
- Subjects
Mice, Inbred C57BL ,Mice ,Recombinant Fusion Proteins ,Intracellular Signaling Peptides and Proteins ,Animals ,Brain ,Fluorescent Antibody Technique ,Protein Isoforms ,Receptor-Like Protein Tyrosine Phosphatases, Class 7 ,Phosphorylation ,Protein Tyrosine Phosphatases ,Protein Processing, Post-Translational - Abstract
The single-copy mouse gene Ptprr gives rise to different protein tyrosine phosphatase (PTP) isoforms in neuronal cells through the use of distinct promoters, alternative splicing, and multiple translation initiation sites. Here, we examined the array of post-translational modifications imposed on the PTPRR protein isoforms PTPBR7, PTP-SL, PTPPBSgamma42 and PTPPBSgamma37, which have distinct N-terminal segments and localize to different parts of the cell. All isoforms were found to be short-lived, constitutively phosphorylated proteins. In addition, the transmembrane isoform, PTPBR7, was subject to N-terminal proteolytic processing, in between amino acid position 136 and 137, resulting in an additional, 65-kDa transmembrane PTPRR isoform. Unlike for some other receptor-type PTPs, the proteolytically produced N-terminal ectodomain does not remain associated with this PTPRR-65. Shedding of PTPBR7-derived polypeptides at the cell surface further adds to the molecular complexity of PTPRR biology.
- Published
- 2006