Crook published a landmark study on the social organization of weavers (or weaverbirds, family Ploceidae) that contributed to the emergence of sociobiology, behavioral ecology, and phylogenetic comparative methods. By comparing ecology, spatial distribution, and mating systems, Crook suggested that the spatial distribution of food resources and breeding habitats influence weaver aggregation during both the nonbreeding season (flocking vs. solitary foraging) and the breeding season (colonial vs. solitary breeding), and the latter in turn impacts mating systems and sexual selection. Although Crook's study stimulated much follow-up research, his conclusions have not been scrutinized using phylogenetically controlled analyses. We revisited Crook's hypotheses using modern phylogenetic comparative methods on an extended data set of 107 weaver species. We showed that both diet and habitat type are associated with spatial distribution and that the latter predicts mating system, consistent with Crook's propositions. The best-supported phylogenetic path model also supported Crook's arguments and uncovered a direct relationship between nonbreeding distribution and mating system. Taken together, our phylogenetically corrected analyses confirm Crook's conjectures on the roles of ecology in social organizations of weavers; however, our analyses also uncovered an association between nonbreeding distributions and mating systems, which was not envisaged by Crook.