1. Learning Representations of Inorganic Materials from Generative Adversarial Networks
- Author
-
Tiantian Hu, Hui Song, Tao Jiang, and Shaobo Li
- Subjects
material characterization ,GAN ,deep learning ,materials discovery ,Mathematics ,QA1-939 - Abstract
The two most important aspects of material research using deep learning (DL) or machine learning (ML) are the characteristics of materials data and learning algorithms, where the proper characterization of materials data is essential for generating accurate models. At present, the characterization of materials based on the molecular composition includes some methods based on feature engineering, such as Magpie and One-hot. Although these characterization methods have achieved significant results in materials research, these methods based on feature engineering cannot guarantee the integrity of materials characterization. One possible approach is to learn the materials characterization via neural networks using the chemical knowledge and implicit composition rules shown in large-scale known materials. This article chooses an adversarial method to learn the composition of atoms using the Generative Adversarial Network (GAN), which makes sense for data symmetry. The total loss value of the discriminator on the test set is reduced from 4.1e13 to 0.3194, indicating that the designed GAN network can well capture the combination of atoms in real materials. We then use the trained discriminator weights for material characterization and predict bandgap, formation energy, critical temperature (Tc) of superconductors on the Open Quantum Materials Database (OQMD), Materials Project (MP), and SuperCond datasets. Experiments show that when using the same predictive model, our proposed method performs better than One-hot and Magpie. This article provides an effective method for characterizing materials based on molecular composition in addition to Magpie, One-hot, etc. In addition, the generator learned in this study generates hypothetical materials with the same distribution as known materials, and these hypotheses can be used as a source for new material discovery.
- Published
- 2020
- Full Text
- View/download PDF