1. A Ducted Photovoltaic Façade Unit with Forced Convection Cooling
- Author
-
Abdel Rahman Elbakheit, Sahl Waheeb, and Ahmed Mahmoud
- Subjects
Renewable Energy, Sustainability and the Environment ,Geography, Planning and Development ,forced convection cooling ,energy generation ,efficiency of photovoltaic ,temperature of photovoltaic ,ducted photovoltaic ,vertical shafts ,BIPV ,Building and Construction ,Management, Monitoring, Policy and Law - Abstract
This paper explores the potential of forced convection cooling in a ducted photovoltaic façade unit. Where a photovoltaic panel is backed by a 5 cm thick insulated duct at a depth of 50 cm. The potential of heat removal from the photovoltaic unit due to forced convection is investigated with a range of fan speeds from 1 m/s to 6 m/s. It is found that the ΔT between the inlet and outlet of the duct ranged from 2.6–24.6 °C. A fan speed of 4 m/s yielded the highest cooling potential by removing 550 W with a cooling efficiency of 51%. Whereas a fan speed of 6 m/s yielded the lowest mean PV cell temperature of 62.7 °C. This would improve the cell’s efficiency by 17.53%. This very experimental setup has been tested previously with natural convection cooling, which removed 529 W with a maximum efficiency of 48.98% This improves PV panel efficiency by 12.69%. The addition of heat removed and power recovered by the ducted system was 68.53% of the former (i.e., forced convection), while it was 61.67% for the latter. A 12 V DC fan with a variable speed electric circuit powered by a fraction of the PV generated power (i.e., 0.75 W) yielded better cooling that translated into nearly 19 W of further energy generation.
- Published
- 2022
- Full Text
- View/download PDF