1. Rhizobacteria Inoculation and Caffeic Acid Alleviated Drought Stress in Lentil Plants
- Author
-
Abdallah M. Elgorban, Subhan Danish, Muqarrab Ali, Muhammad Naeem Akbar, Rahul Datta, Mohammad Javed Ansari, Mazhar Abbas, Shah Fahad, Atiqa Zahid, Yasir Iftikhar, and Muhammad Zafar-ul-Hye
- Subjects
abiotic stress ,Bacillus amyloliquefaciens ,Geography, Planning and Development ,Turgor pressure ,TJ807-830 ,Management, Monitoring, Policy and Law ,Rhizobacteria ,TD194-195 ,Renewable energy sources ,chemistry.chemical_compound ,Caffeic acid ,GE1-350 ,Proline ,Legume ,biology ,Environmental effects of industries and plants ,Renewable Energy, Sustainability and the Environment ,Abiotic stress ,fungi ,food and beverages ,Building and Construction ,plant growth ,legume ,biology.organism_classification ,Environmental sciences ,Horticulture ,chemistry ,Chlorophyll ,caffeic acid - Abstract
Lentil (Lens culinaris Medik) is an important component of the human diet due to its high mineral and protein contents. Abiotic stresses, i.e., drought, decreases plant growth and yield. Drought causes the synthesis of reactive oxygen species, which decrease a plant’s starch contents and growth. However, ACC-deaminase (1-aminocyclopropane-1-carboxylate deaminase) producing rhizobacteria can alleviate drought stress by decreasing ethylene levels. On the other hand, caffeic acid (CA) can also positively affect cell expansion and turgor pressure maintenance under drought stress. Therefore, the current study was planned with an aim to assess the effect of CA (0, 20, 50 and 100 ppm) and ACC-deaminase rhizobacteria (Lysinibacillus fusiform, Bacillus amyloliquefaciens) on lentils under drought stress. The combined application of CA and ACC-deaminase containing rhizobacteria significantly improved plant height (55%), number of pods per plant (51%), 1000-grain weight (45%), nitrogen concentration (56%), phosphorus concentration (19%), potassium concentration (21%), chlorophyll (54%), relative water contents RWC (60%) and protein contents (55%). A significant decrease in electrolyte leakage (30%), proline contents (44%), and hydrogen peroxide contents (54%), along with an improvement in cell membrane stability (34% over control) validated the combined use of CA and rhizobacteria. In conclusion, co-application of CA (20 ppm) and ACC-deaminase producing rhizobacteria can significantly improve plant growth and yield for farmers under drought stress. More investigations are suggested at the field level to select the best rhizobacteria and CA level for lentils under drought.
- Published
- 2021