1. Ginsenoside Rg1 Improves Differentiation by Inhibiting Senescence of Human Bone Marrow Mesenchymal Stem Cell via GSK-3β and β-Catenin
- Author
-
Ziling Wang, Rong Jiang, Lu Wang, Xiongbin Chen, Yue Xiang, Linbo Chen, Minghe Xiao, Li Ling, and Yaping Wang
- Subjects
Internal medicine ,RC31-1245 - Abstract
Objectives. To demonstrate the effect of Ginsenoside Rg1 on the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Subsequently, a rational mechanism for the detection of Rg1 which affects mesenchymal stem cell differentiation was explored. Methods. Flow cytometry is used for cell identification. The differentiation ability of hBM-MSCs was studied by differentiation culture. SA-β-gal staining is used to detect cell senescence levels. Western blot and immunofluorescence were used to determine protein expression levels. RT-qPCR is used to detect mRNA expression levels. Results. Rg1 regulates the differentiation of hBM-MSCs. Differentiation culture analysis showed that Rg1 promoted cells to osteogenesis and chondrogenesis. Western blot results showed that Rg1 regulated the overactivation of the β-catenin signaling pathway and significantly adjusted the phosphorylation of GSK-3β. GSK-3β inhibitor (Licl) significantly increased Rg1-induced phosphorylation of GSK-3β, which in turn reduced Rg1-induced differentiation of hBM-MSCs. Conclusion. Ginsenoside Rg1 can reduce the excessive activation of the Wnt pathway in senescent cells by inhibiting the phosphorylation of GSK-3β and regulate the mesenchymal stem cell differentiation ability.
- Published
- 2020
- Full Text
- View/download PDF