1. FULLY STOCHASTIC TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING FOR EQUALITY-CONSTRAINED OPTIMIZATION PROBLEMS.
- Author
-
YUCHEN FANG, SEN NA, MAHONEY, MICHAEL W., and KOLAR, MLADEN
- Subjects
- *
STOCHASTIC programming , *QUADRATIC programming , *HESSIAN matrices , *CONSTRAINED optimization , *RELAXATION techniques , *NONLINEAR equations , *LOGISTIC regression analysis - Abstract
We propose a trust-region stochastic sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with stochastic objectives and deterministic equality constraints. We consider a fully stochastic setting, where at each step a single sample is generated to estimate the objective gradient. The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices (i.e., Hessians without modification) in SQP subproblems. As a trust-region method for constrained optimization, our algorithm must address an infeasibility issue---the linearized equality constraints and trust-region constraints may lead to infeasible SQP subproblems. In this regard, we propose an adaptive relaxation technique to compute the trial step, consisting of a normal step and a tangential step. To control the lengths of these two steps while ensuring a scale-invariant property, we adaptively decompose the trust-region radius into two segments, based on the proportions of the rescaled feasibility and optimality residuals to the rescaled full KKT residual. The normal step has a closed form, while the tangential step is obtained by solving a trust-region subproblem, to which a solution ensuring the Cauchy reduction is sufficient for our study. We establish a global almost sure convergence guarantee for TR-StoSQP and illustrate its empirical performance on both a subset of problems in the CUTEst test set and constrained logistic regression problems using data from the LIBSVM collection. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF