1. Positivity of Integrals of Bessel Functions
- Author
-
Jolanta K. Misiewicz and Donald St. P. Richards
- Subjects
Computational Mathematics ,symbols.namesake ,Applied Mathematics ,Mathematical analysis ,symbols ,Beta (velocity) ,Lambda ,Analysis ,Bessel function ,Mathematics - Abstract
Using results on multiply monotone functions, we establish the positivity of integrals of Bessel functions of the form \[ \int_0^x {\left( {x^\mu - t^\mu } \right)^\lambda } t^\alpha J_\beta (t)dt,\quad x > 0,\] where $0 < \mu \leq 1 \leq \lambda $ and $\alpha $, $\beta $ satisfy various conditions. In particular, the result holds if $ - \frac{1}{2} \leq \alpha = \beta \leq \frac{3}{2}$ or if $\frac{3}{2} = \alpha \leq \beta $.
- Published
- 1994
- Full Text
- View/download PDF