1. YY1 PROMOTES MICROGLIA M2 POLARIZATION THROUGH THE MIR-130A-3P/TREM-2 AXIS TO ALLEVIATE SEPSIS-ASSOCIATED ENCEPHALOPATHY
- Author
-
Liang-Shan Peng, Yan Xu, and Qiao-Sheng Wang
- Subjects
Lipopolysaccharides ,Mice ,MicroRNAs ,Sepsis-Associated Encephalopathy ,Emergency Medicine ,Animals ,Microglia ,RNA, Messenger ,Critical Care and Intensive Care Medicine ,Transcription Factors - Abstract
Purpose: Sepsis-associated encephalopathy (SAE) induces cognitive dysfunction via mechanisms that commonly involve neuroinflammation. Yin Yang 1 (YY1) is an important transcription factor that acts as a key role in sepsis and neuroepithelium development. However, the function of YY1 in SAE remains unclear. Our study aimed to probe the intrinsic and concrete molecular mechanism of YY1 in SAE. Methods: SAE cell model and SAE animal model were constructed by lipopolysaccharide (LPS) treatment and cecal ligation and puncture surgery, respectively. Behavioral tests were performed to analyze the cognitive function. The polarization state of mouse microglia (BV-2 cells) was assessed by flow cytometry assay. The mRNA and protein expressions were assessed by qRT-PCR and western blot. Finally, the binding relationships between YY1, miR-130a-3p, andTREM-2were verified by dual luciferase reporter gene assay and/or ChIP assay. Results: Here our results described that YY1 and TREM-2 were downregulated and miR-130a-3p was upregulated in SAE. YY1 overexpression could promote M2 polarization of microglia, and alleviate neuroinflammation and behavioral deficits in vitro and in vivo. YY1 could inhibit miR-130a-3p promoter activity. As expected, miR-130a-3p overexpression abolished the effects of YY1 overexpression on LPS-treated BV-2 cells. Besides, TREM-2 was identified as the target of miR-130a-3p. TREM-2 silencing could reverse the effects of miR-130a-3p inhibition on LPS-treated BV-2 cells. Conclusion: Taken together, YY1 promoted microglia M2 polarization via upregulating TREM-2 by interacting with miR-130a-3p promoter, suggesting YY1 overexpression might be a novel therapeutic strategy of SAE.
- Published
- 2022