1. Blockchain Based Decentralized and Proactive Caching Strategy in Mobile Edge Computing Environment.
- Author
-
Bai, Jingpan, Zhu, Silei, and Ji, Houling
- Subjects
- *
MOBILE computing , *EDGE computing , *BLOCKCHAINS , *CONSENSUS (Social sciences) , *INTERIOR-point methods - Abstract
In the mobile edge computing (MEC) environment, the edge caching can provide the timely data response service for the intelligent scenarios. However, due to the limited storage capacity of edge nodes and the malicious node behavior, the question of how to select the cached contents and realize the decentralized security data caching faces challenges. In this paper, a blockchain-based decentralized and proactive caching strategy is proposed in an MEC environment to address this problem. The novelty is that the blockchain was adopted in an MEC environment with a proactive caching strategy based on node utility, and the corresponding optimization problem was built. The blockchain was adopted to build a secure and reliable service environment. The employed methodology is that the optimal caching strategy was achieved based on the linear relaxation technology and the interior point method. Additionally, in a content caching system, there is a trade-off between cache space and node utility, and the caching strategy was proposed to solve this problem. There was also a trade-off between the consensus process delay of blockchain and the caching latency of content. An offline consensus authentication method was adopted to reduce the influence of the consensus process delay on the content caching. The key finding was that the proposed algorithm can reduce latency and can ensure the security data caching in an IoT environment. Finally, the simulation experiment showed that the proposed algorithm can achieve up to 49.32%, 43.11%, and 34.85% improvements on the cache hit rate, the average content response latency, and the average system utility, respectively, compared to the random content caching algorithm, and it achieved up to 9.67%, 8.11%, and 5.95% increases, successively, compared to the greedy content caching algorithm. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF