1. Optimal Design and Analysis on High Overload Buffer Structure of Passive Semi-Strapdown Inertial Navigation System
- Author
-
Jinqiang Li, Jie Li, Li Qin, Wei Liu, Xiaokai Wei, Ning Gao, and Yang Liu
- Subjects
passive semi-strapdown ,isolation rolling platform ,high-speed rotation ,overload buffer ,Chemical technology ,TP1-1185 - Abstract
The isolation rolling platform inside a passive semi-strapdown inertial navigation system can isolate the high-speed rotation of a projectile via bearing to provide a low rotating speed environment for the angular rate sensors inside the platform in order to further improve the accuracy by reducing its measurement range. Aiming at the problem that the internal bearing cannot withstand high overload, an optimal design method for a high overload buffer structure based on point contact spherical cap structure is proposed. Changing the materials of the spherical caps can reduce the deformation of the two spherical caps during impact and reduce the pivoting friction; at the same time, the upper and lower spherical caps are both forced to separate by the spring force after the impact and to eliminate the influence of the pivoting friction torque that is generated by the contact of two spherical caps on the stability of the isolated rolling platform. By virtue of finite element analysis and ground semi-physical simulation experiments, the feasibility of the design is verified. The experiment results show that the design can play an effectively protective role in anti-high overload, and the maximum deformation radius of the optimized point contact spherical cap structure can be reduced by 40.8%; after the upper and lower spherical caps are separated, the isolation rolling platform’ capability of anti-high-speed rotation can be improved by 52% under the rotation speed of the main shaft at 10 r/s. In this way, the stability of the platform is improved, thus proving the value of the design method in engineering applications.
- Published
- 2020
- Full Text
- View/download PDF