1. Sensitivity Analysis for Predicting Sub-Micron Aerosol Concentrations Based on Meteorological Parameters
- Author
-
Martha A. Zaidan, Ola Surakhi, Pak Lun Fung, and Tareq Hussein
- Subjects
particle number concentration ,modeling ,sensitivity analysis ,artificial neural networks ,feed-forward neural network ,time-delay neural network ,Chemical technology ,TP1-1185 - Abstract
Sub-micron aerosols are a vital air pollutant to be measured because they pose health effects. These particles are quantified as particle number concentration (PN). However, PN measurements are not always available in air quality measurement stations, leading to data scarcity. In order to compensate this, PN modeling needs to be developed. This paper presents a PN modeling framework using sensitivity analysis tested on a one year aerosol measurement campaign conducted in Amman, Jordan. The method prepares a set of different combinations of all measured meteorological parameters to be descriptors of PN concentration. In this case, we resort to artificial neural networks in the forms of a feed-forward neural network (FFNN) and a time-delay neural network (TDNN) as modeling tools, and then, we attempt to find the best descriptors using all these combinations as model inputs. The best modeling tools are FFNN for daily averaged data (with R 2 = 0.77 ) and TDNN for hourly averaged data (with R 2 = 0.66 ) where the best combinations of meteorological parameters are found to be temperature, relative humidity, pressure, and wind speed. As the models follow the patterns of diurnal cycles well, the results are considered to be satisfactory. When PN measurements are not directly available or there are massive missing PN concentration data, PN models can be used to estimate PN concentration using available measured meteorological parameters.
- Published
- 2020
- Full Text
- View/download PDF