1. First-Principles Investigation of Electronic Properties of GaAsxSb1 –x Ternary Alloys.
- Author
-
Singh, A. K., Chandra, Devesh, Kattayat, Sandhya, Kumar, Shalendra, Alvi, P. A., and Rathi, Amit
- Subjects
- *
TERNARY alloys , *DENSITY functional theory , *INDIUM gallium arsenide - Abstract
Compositional variations in GaAs based ternary alloys have exhibited wide range alterations in electronic properties. In the present paper, first-principles study of GaAsxSb1 – x ternary alloys have been presented and discussed. Density functional theory (DFT) computation based on the full-potential (linearized) augmented plane-wave (FP-LAPW) method has been utilized to calculate the Density of States (DOS) and the band structure of ternary alloys GaAsxSb1 – x (x = 0, 0.25, 0.50, 0.75, 1). The calculations were performed using the exchange-correlation energy functional from Perdew, Burke, and Ernzerhof, a generalized-gradient approximation (GGA-PBE) and Becke–Johnson exchange potential with local-density approximation (BJLDA) available within the framework of WIEN2k code. As compared to PBE, the results obtained from BJLDA are in close agreement with other experimental works. The DOS results show a reduction in bandgap as the Sb fraction is increased in GaAsxSb1 – x ternary alloys. The bandgap obtained by PBE and BJLDA are found to deviate from Vegard's law, i.e., it doesn't vary linearly with composition. However, the bandgap obtained by BJLD is found to closely match Vegard's law when the bowing parameter is considered. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF