1. Antifungal activity of 2-chloro-5-trifluoromethoxybenzeneboronic acid and inhibitory mechanisms on Geotrichum candidum from sour rot Xiaozhou mustard root tuber.
- Author
-
Mo Q, Xiao Z, Ou K, Yang G, Qiu F, Guo T, and Mo Y
- Subjects
- Mustard Plant, Boronic Acids pharmacology, Antifungal Agents pharmacology, Mycelium drug effects, Mycelium growth & development, Reactive Oxygen Species metabolism, Plant Tubers microbiology, Geotrichum drug effects, Plant Roots drug effects, Plant Roots microbiology, Plant Roots growth & development, Plant Diseases microbiology, Plant Diseases prevention & control
- Abstract
Xiaozhou mustard (Brassica napiformis) root tuber, a traditional fermented vegetable, has a long history in Rongan County, Guangxi Province. However, the frequent occurrence of root tuber sour rot by Geotrichum candidum (G. candidum) has seriously reduced Xiaozhou mustard production and quality in recent years. The objective of the present study is to investigate the antifungal efficacy of 2-chloro-5-trifluoromethoxybenzeneboronic acid (Cl-F-BBA) against G. candidum and its possible mechanisms. The results revealed that a concentration of 0.25 mg/mL Cl-F-BBA completely halted mycelial growth and spore germination. Furthermore, a slightly lower concentration of 0.20 mg/mL was sufficient to compromise the integrity of the plasma membrane in mycelia and mitochondria, leading to a reduction in respiratory rate, activities of malate dehydrogenase (MDH), and succinate dehydrogenase (SDH), ATP content, and energy charge. This concentration also significantly disordered antioxidant metabolism, resulting in the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), and caused intracellular leakage in mycelia. In vivo experiments further demonstrated that Xiaozhou mustard root tubers treated with Cl-F-BBA exhibited markedly lower decay rates and lesion diameters compared to the control group. In summary, Cl-F-BBA presents a promising solution for controlling root tuber sour rot in Xiaozhou mustard caused by G. candidum., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF