1. Contact gating at GHz frequency in graphene
- Author
-
Quentin Wilmart, M. Rosticher, N. Garroum, Gwendal Fève, Bernard Plaçais, Jean-Marc Berroir, A. Inhofer, Mohamed Boukhicha, Wei Yang, P. Morfin, Laboratoire Pierre Aigrain (LPA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Statistique de l'ENS (LPS), Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer science ,Transconductance ,FOS: Physical sciences ,02 engineering and technology ,Gating ,Hardware_PERFORMANCEANDRELIABILITY ,Bioinformatics ,01 natural sciences ,Article ,law.invention ,symbols.namesake ,Charge-carrier density ,law ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Hardware_INTEGRATEDCIRCUITS ,Electronics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Multidisciplinary ,Condensed Matter - Mesoscale and Nanoscale Physics ,Graphene ,business.industry ,Fermi level ,Transistor ,Electrical engineering ,021001 nanoscience & nanotechnology ,Scaling limit ,Modulation ,symbols ,Enhanced Data Rates for GSM Evolution ,0210 nano-technology ,business ,Communication channel - Abstract
The paradigm of graphene transistors is based on the gate modulation of the channel carrier density by means of a local channel gate. This standard architecture is subject to the scaling limit of the channel length and further restrictions due to access and contact resistances impeding the device performance. We propose a novel design, overcoming these issues by implementing additional local gates underneath the contact region which allow a full control of the Klein barrier taking place at the contact edge. In particular, our work demonstrates the GHz operation of transistors driven by independent contact gates. We benchmark the standard channel and novel contact gating and report for the later dynamical transconductance levels at the state of the art. Our finding may find applications in electronics and optoelectronics whenever there is need to control independently the Fermi level and the electrostatic potential of electronic sources or to get rid of cumbersome local channel gates.
- Published
- 2016
- Full Text
- View/download PDF