1. Integrated photon pairs source in silicon carbide based on micro-ring resonators for quantum storage at telecom wavelengths.
- Author
-
Ramírez, P. M. C. Tavares, Gómez, J. S. S. Durán, Becerra, G. J. Rodríguez, Ramírez-Alarcón, R., Robles, M. Gómez, and Salas-Montiel, R.
- Subjects
- *
WAVELENGTH division multiplexing , *HYPERFINE interactions , *HYPERFINE structure , *SILICON carbide , *FABRICATION (Manufacturing) - Abstract
We present the design of an on-chip integrated photon pair source based on Spontaneous Four Wave Mixing (SFWM), implemented on a ring resonator in the 4H Silicon Carbide On Insulator (4H-SiCOI) platform, compatible with a solid state quantum memory in the telecommunications band. Through careful engineering of the waveguide dispersion and micro-ring resonator dimensions, we found solutions where the signal photons are emitted at 1536.48 nm with a bandwidth of ∼ 150 MHz, enabling the interaction with the hyperfine structure of Er 3 + ions. Simultaneously, the idler photons are generated at 1563.86 nm, matching the central wavelength of a specific channel in a commercial dense wavelength division multiplexing system. The proposed device fulfill all the spectral requirements in a simple ring-bus coupled waveguide configuration with design parameters within the range of reported values for similar resonators, making feasible its manufacturing with current fabrication capabilities. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF