1. A noise-resisted scheme of dynamical decoupling pulses for quantum memories
- Author
-
Xing-Yu Zhu, Guang-Can Guo, Zong-Quan Zhou, Tao Tu, Ao-Lin Guo, Bo Gong, and Chuan-Feng Li
- Subjects
Multidisciplinary ,Dynamical decoupling ,Computer science ,Quantum physics ,lcsh:R ,lcsh:Medicine ,02 engineering and technology ,Decoupling (cosmology) ,021001 nanoscience & nanotechnology ,Topology ,01 natural sciences ,Article ,Optical physics ,0103 physical sciences ,Local environment ,lcsh:Q ,Optical techniques ,Quantum information ,010306 general physics ,0210 nano-technology ,lcsh:Science ,Quantum - Abstract
Stable quantum memories that capable of storing quantum information for long time scales are an essential building block for an array of potential applications. The long memory time are usually achieved via dynamical decoupling technique involving decoupling of the memory states from its local environment. However, because this process is strongly limited by the errors in the pulses, an noise-protected scheme remains challenging in the field of quantum memories. Here we propose a scheme to design a noise-resisted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document}π pulse, which features high fidelity exceeding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.9\%$$\end{document}99.9% under realistic situations. Using this \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document}π pulse we can generate different dynamical decoupling sequences that preserve high fidelity for long time scales. The versatility, robustness, and potential scalability of this method may allow for various applications in quantum memories technology.
- Published
- 2020
- Full Text
- View/download PDF