1. An olivine cumulate outcrop on the floor of Jezero crater, Mars.
- Author
-
Liu Y, Tice MM, Schmidt ME, Treiman AH, Kizovski TV, Hurowitz JA, Allwood AC, Henneke J, Pedersen DAK, VanBommel SJ, Jones MWM, Knight AL, Orenstein BJ, Clark BC, Elam WT, Heirwegh CM, Barber T, Beegle LW, Benzerara K, Bernard S, Beyssac O, Bosak T, Brown AJ, Cardarelli EL, Catling DC, Christian JR, Cloutis EA, Cohen BA, Davidoff S, Fairén AG, Farley KA, Flannery DT, Galvin A, Grotzinger JP, Gupta S, Hall J, Herd CDK, Hickman-Lewis K, Hodyss RP, Horgan BHN, Johnson JR, Jørgensen JL, Kah LC, Maki JN, Mandon L, Mangold N, McCubbin FM, McLennan SM, Moore K, Nachon M, Nemere P, Nothdurft LD, Núñez JI, O'Neil L, Quantin-Nataf CM, Sautter V, Shuster DL, Siebach KL, Simon JI, Sinclair KP, Stack KM, Steele A, Tarnas JD, Tosca NJ, Uckert K, Udry A, Wade LA, Weiss BP, Wiens RC, Williford KH, and Zorzano MP
- Abstract
The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigated the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We found that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multistage cooling of a thick magma body.
- Published
- 2022
- Full Text
- View/download PDF