1. Real-time observation of non-equilibrium phonon-electron energy and angular momentum flow in laser-heated nickel.
- Author
-
Shokeen V, Heber M, Kutnyakhov D, Wang X, Yaroslavtsev A, Maldonado P, Berritta M, Wind N, Wenthaus L, Pressacco F, Min CH, Nissen M, Mahatha SK, Dziarzhytski S, Oppeneer PM, Rossnagel K, Elmers HJ, Schönhense G, and Dürr HA
- Abstract
Identifying the microscopic nature of non-equilibrium energy transfer mechanisms among electronic, spin, and lattice degrees of freedom is central to understanding ultrafast phenomena such as manipulating magnetism on the femtosecond timescale. Here, we use time- and angle-resolved photoemission spectroscopy to go beyond the often-used ensemble-averaged view of non-equilibrium dynamics in terms of quasiparticle temperature evolutions. We show for ferromagnetic Ni that the non-equilibrium electron and spin dynamics display pronounced variations with electron momentum, whereas the magnetic exchange interaction remains isotropic. This highlights the influence of lattice-mediated scattering processes and opens a pathway toward unraveling the still elusive microscopic mechanism of spin-lattice angular momentum transfer.
- Published
- 2024
- Full Text
- View/download PDF