1. Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment
- Author
-
Jennifer Ross, Zak McIver, Thomas Lambert, Cecilia Piergentili, Jasmine Emma Bird, Kelly J. Gallagher, Faye L. Cruickshank, Patrick James, Efrain Zarazúa-Arvizu, Louise E. Horsfall, Kevin J. Waldron, Marcus D. Wilson, C. Logan Mackay, Arnaud Baslé, David J. Clarke, and Jon Marles-Wright
- Subjects
Multidisciplinary - Abstract
Encapsulins are protein nanocompartments that house various cargo enzymes, including a family of decameric ferritin-like proteins. Here, we study a recombinant Haliangium ochraceum encapsulin:encapsulated ferritin complex using cryo–electron microscopy and hydrogen/deuterium exchange mass spectrometry to gain insight into the structural relationship between the encapsulin shell and its protein cargo. An asymmetric single-particle reconstruction reveals four encapsulated ferritin decamers in a tetrahedral arrangement within the encapsulin nanocompartment. This leads to a symmetry mismatch between the protein cargo and the icosahedral encapsulin shell. The encapsulated ferritin decamers are offset from the interior face of the encapsulin shell. Using hydrogen/deuterium exchange mass spectrometry, we observed the dynamic behavior of the major fivefold pore in the encapsulin shell and show the pore opening via the movement of the encapsulin A-domain. These data will accelerate efforts to engineer the encapsulation of heterologous cargo proteins and to alter the permeability of the encapsulin shell via pore modifications.
- Published
- 2022
- Full Text
- View/download PDF