1. Remote Sensing of Chlorophyll-a and Water Quality over Inland Lakes: How to Alleviate Geo-Location Error and Temporal Discrepancy in Model Training
- Author
-
Jongmin Park, Sami Khanal, Kaiguang Zhao, and Kyuhyun Byun
- Subjects
AIC-like weighted regression ,Harmonized Landsat Sentinel-2 ,chlorophyll-a ,HAB ,Science - Abstract
Harmful algal blooms (HABs) threaten lake ecosystems and public health. Early HAB detection is possible by monitoring chlorophyll-a (Chl-a) concentration. Ground-based Chl-a data have limited spatial and temporal coverage but can be geo-registered with temporally coincident satellite imagery to calibrate a remote sensing-based predictive model for regional mapping over time. When matching ground and satellite data, positional and temporal discrepancies are unavoidable due particularly to dynamic lake surfaces, thereby biasing the model calibration. This limitation has long been recognized but so far has not been addressed explicitly. To mitigate such effects of data mismatching, we proposed an Akaike Information Criterion (AIC)-like weighted regression algorithm that relies on an error-based heuristic to automatically favor “good” data points and downplay “bad” points. We evaluated the algorithm for estimating Chl-a over inland lakes in Ohio using Harmonized Landsat Sentinel-2. The AIC-like weighted regression estimates showed superior performance with an R2 of 0.91 and an error variance (σE2) of 0.29 μg/L, outperforming linear regression (R2 = 0.34, σE2 = 2.34 μg/L) and random forest (R2 = 0.82, σE2 = 0.92 μg/L). We also noticed the poorest performance occurred in the spring due to low reflectance variation in clear water and low Chl-a concentration. Our weighted regression scheme is adaptive and generically applicable. Future studies may adopt our scheme to tackle other remote sensing estimation problems (e.g., terrestrial applications) for alleviating the adverse effects of geolocation errors and temporal discrepancies.
- Published
- 2024
- Full Text
- View/download PDF