1. Interannual Glacial Mass Changes in High Mountain Asia and Connections to Climate Variability.
- Author
-
Wang, Yifan, Zhan, Jingang, Shi, Hongling, and Chen, Jianli
- Subjects
WATER management ,TEMPERATURE control ,CLIMATE change ,WAVELETS (Mathematics) ,EL Nino - Abstract
We use data from the Gravity Recovery and Climate Experiment and its Follow-On mission (GRACE/GRACE-FO) from April 2002 to December 2022 to analyze interannual glacial mass changes in High Mountain Asia (HMA) and its subregions and their driving factors. Glacial mass changes in the HMA subregions show clear regional characteristics. Interannual glacial mass changes in the HMA region are closely related to interannual oscillations of precipitation and temperature, and are also correlated with El Niño–Southern Oscillation (ENSO). Glacial mass changes in the regions (R1–R6) are dominated by precipitation, and ENSO affects interannual glacial mass changes mainly by affecting precipitation. In region (R7) and region (R8), the glacial mass changes are mainly controlled by temperature. ENSO also affects the interannual glacial mass changes by affecting interannual changes in temperature. The interannual glacial mass changes in regions (R9–R11) are jointly dominated by temperature and precipitation, and also related to ENSO. Another interesting finding of this study is that glacial mass changes in the western part of HMA (R1–R6) show a clear 6–7-year oscillation, strongly correlated with a similar oscillation in precipitation, while in the eastern part (R9–R11), a 2–3-year oscillation was found in both glacial mass change and precipitation, as well as temperature. These results verify the response of interannual HMA glacial mass changes to climate processes, crucial for understanding regional climate dynamics and sustainable water resource management. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF