1. Mobile Laser Scanning for Estimating Tree Structural Attributes in a Temperate Hardwood Forest
- Author
-
Bastien Vandendaele, Olivier Martin-Ducup, Richard A. Fournier, Gaetan Pelletier, Philippe Lejeune, Université de Sherbrooke (UdeS), Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM), Northern Hardwoods Research Institute, TERRA Research and Teaching Center, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), and Université de Liège - Gembloux
- Subjects
Mobile laser scanning ,QSM ,hardwood ,destructive sample ,trees ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,mobile laser scanning ,SLAM ,terrestrial laser scanning ,wood volume ,forest inventory ,lidar ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,General Earth and Planetary Sciences ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
International audience; The emergence of mobile laser scanning (MLS) systems that use simultaneous localization and mapping (SLAM) technology to map their environment opens up new opportunities for characterizing forest structure. The speed and accuracy of data acquisition makes them particularly adapted to operational inventories. MLS also shows great potential for estimating inventory attributes that are difficult to measure in the field, such as wood volume or crown dimensions. Hardwood species represent a significant challenge for wood volume estimation compared to softwoods because a substantial portion of the volume is included in the crown, making them more prone to allometric bias and more complex to model. This study assessed the potential of MLS data to estimate tree structural attributes in a temperate hardwood stand: height, crown dimensions, diameter at breast height (DBH), and merchantable wood volume. Merchantable wood volume estimates were evaluated to the third branching order using the quantitative structural modeling (QSM) approach. Destructive field measurements and terrestrial laser scanning (TLS) data of 26 hardwood trees were used as reference to quantify errors on wood volume and inventory attribute estimations from MLS data. Results reveal that SLAM-based MLS systems provided accurate estimates of tree height (RMSE = 0.42 m (1.78%), R2 = 0.93), crown projected area (RMSE = 3.23 m2 (5.75%), R2 = 0.99), crown volume (RMSE = 71.4 m3 (23.38%), R2 = 0.99), DBH (RMSE = 1.21 cm (3.07%), R2 = 0.99), and merchantable wood volume (RMSE = 0.39 m3 (18.57%), R2 = 0.95), when compared to TLS. They also estimated operational merchantable volume with good accuracy (RMSE = 0.42 m3 (21.82%), R2 = 0.94) compared to destructive measurements. Finally, the merchantable stem volume derived from MLS data was estimated with high accuracy compared to TLS (RMSE = 0.11 m3 (8.32%), R2 = 0.96) and regional stem taper models (RMSE = 0.16 m3 (14.7%), R2 = 0.93). We expect our results would provide a better understanding of the potential of SLAM-based MLS systems to support in-situ forest inventory
- Published
- 2022