1. Spatiotemporal Characteristics and Hazard Assessments of Maize (Zea mays L.) Drought and Waterlogging: A Case Study in Songliao Plain of China
- Author
-
Rui Wang, Guangzhi Rong, Cong Liu, Walian Du, Jiquan Zhang, Zhijun Tong, and Xingpeng Liu
- Subjects
TVDI ,water stress ,hazard assessment ,maize ,Science - Abstract
The Songliao Plain is the largest maize (Zea mays L.) cropland area in China and, thus, is most influenced by water stress. To mitigate the adverse impact of water stress on maize yield and quality, various agricultural irrigation strategies have been implemented. Based on land surface temperature and an enhanced vegetation index, this study constructed the temperature vegetation dryness index (TVDI) and combined the Hurst index and Sen trend to analyze the spatiotemporal characteristics of drought and waterlogging. From the correlation between TVDI and gross primary productivity, the weight coefficients of different growth cycles of maize were derived to determine the drought and waterlogging stresses on maize in Songliao Plain for 2000–2020. The drought hazard on the western side of Songliao Plain was high in the west and low in the east, whereas the waterlogging hazard was high in the east. Waterlogging likely persisted according to the spatiotemporal trends and patterns of drought and waterlogging. During the second growth cycle, maize was most severely affected by water stress. There was a spatial heterogeneity in the severity of the hazards and the stress degree of maize. For the reason that precipitation in the study area was concentrated between mid-late July and early August, maize was susceptible to drought stress during the first two growth stages. Irrigation concentrated in the early and middle stages of maize growth and development in the western part of the Songliao Plain reduced the drought stress-induced damage. Spatiotemporally-detected drought and waterlogging couplings and hazards for maize in the Songliao Plain for 2000–2020 provide actionable insights into the prevention and mitigation of such disasters and the implementation of water-saving irrigation practices at the regional scale.
- Published
- 2023
- Full Text
- View/download PDF