1. Evaluating Short-Range Forecasts of a 12 km Global Ensemble Prediction System and a 4 km Convection-Permitting Regional Ensemble Prediction System.
- Author
-
Mamgain, Ashu, Prasad, S. Kiran, Sarkar, Abhijit, Shanker, Gauri, Dube, Anumeha, and Mitra, Ashis K.
- Subjects
LONG-range weather forecasting ,WEATHER forecasting ,PRECIPITATION forecasting ,ZONAL winds ,FORECASTING ,RAINFALL - Abstract
Information regarding the uncertainty associated with weather forecasts, particularly when they are related to a localized area at convective scales, can certainly play a crucial role in enhancing decision-making. In this study, we discuss and evaluate a short-range forecast (0–75 h) from of a regional ensemble prediction system (NEPS-R) running operationally at the National Centre for Medium Range Weather Forecasting (NCMRWF). NEPS-R operates at a convective scale (~ 4 km) with 11 perturbed ensemble members and a control run. We assess the performance of the NEPS-R in comparison to its coarser-resolution global counterpart (NEPS-G), which is also operational. NEPS-R relies on initial and boundary conditions provided by NEPS-G. The NEPS-G produces valuable forecast products and is capable of predicting weather patterns and events at a spatial resolution of 12 km. The objective of this study is to investigate areas where NEPS-R forecasts could add value to the short-range forecasts of NEPS-G. Verification is conducted for the period from 1st August to 30th September 2019, covering the summer monsoon over a domain encompassing India and its neighboring regions, using the same ensemble size (11 members). In addition to standard verification metrics, fraction skill scores, and potential economic values are used as the evaluation measures for the ensemble prediction systems (EPSs). Near-surface variables such as precipitation and zonal wind at 850 hPa (U850) are considered in this study. The results suggest that, in some cases, such as extreme precipitation, there is a benefit in using regional EPS forecast. State-of-the-art probabilistic measures indicate that the regional EPS has reduced under-dispersion in the case of precipitation compared to the global EPS. The global EPS tends to provide higher skill scores for U850 forecasts, whereas the regional EPS outperforms the global EPS for heavy precipitation events (> 65 mm/day). There are instances when the regional EPS can provide a useful forecast for cases, including moderate rainfall, and can add more value to the global EPS forecast products. The investigation of diurnal variations in precipitation forecasts reveals that although both models struggle to predict the correct timing, the time phase and peaks in precipitation in the convection-permitting regional model are closer to the observations. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF