1. Evolution of Stronger SARS-CoV-2 Variants as Revealed Through the Lens of Molecular Dynamics Simulations.
- Author
-
Wozney AJ, Smith MA, Abdrabbo M, Birch CM, Cicigoi KA, Dolan CC, Gerzema AEL, Hansen A, Henseler EJ, LaBerge B, Leavens CM, Le CN, Lindquist AC, Ludwig RK, O'Reilly MG, Reynolds JH, Sherman BA, Sillman HW, Smith MA, Snortheim MJ, Svaren LM, Vanderpas EC, Voon A, Wackett MJ, Weiss MM, Hati S, and Bhattacharyya S
- Subjects
- Angiotensin-Converting Enzyme 2 chemistry, Humans, Molecular Dynamics Simulation, Mutation, Protein Binding, Protein Interaction Mapping, Spike Glycoprotein, Coronavirus chemistry, Evolution, Molecular, SARS-CoV-2 genetics
- Abstract
Using molecular dynamics simulations, the protein-protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory syndrome coronavirus 2 spike protein and the peptidase domain of human angiotensin-converting enzyme 2 were investigated. These variants are alpha, beta, gamma, delta, eta, kappa, and omicron. Using 100 ns simulation data, the residue interaction networks at the protein-protein interface were identified. Also, the impact of mutations on essential protein dynamics, backbone flexibility, and interaction energy of the simulated protein-protein complexes were studied. The protein-protein interface for the wild-type, delta, and omicron variants contained several stronger interactions, while the alpha, beta, gamma, eta, and kappa variants exhibited an opposite scenario as evident from the analysis of the inter-residue interaction distances and pair-wise interaction energies. The study reveals that two distinct residue networks at the central and right contact regions forge stronger binding affinity between the protein partners. The study provides a molecular-level insight into how enhanced transmissibility and infectivity by delta and omicron variants are most likely tied to a handful of interacting residues at the binding interface, which could potentially be utilized for future antibody constructs and structure-based antiviral drug design., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF