This study investigates the geomorphological dynamics of badland areas in the Araguás catchment (0.45 km²) in the Central Pyrenees. The genesis and development of badlands in the Central Pyrenees is favoured by the presence of Eocene marls and a markedly seasonal climate. The Aragu²s catchment has been monitored since 2004. Analysis of weathering processes and regolith dynamics showed that alternating freeze-thaw and wetting-drying cycles are the main causes of regolith development and weathering, and effectiveness and intensity of these processes is maximum in winter and summer. Evolution of the badland surfaces is related to regolith moisture level and temperature, closely associated with the season and slope exposure, which cause cyclical variations in regolith physical conditions. The most important effect associated with regolith dynamics is the temporal delay between maximum rainfall erosivity and variation in maximum surface runoff generation, reflected in seasonal differences in sediment transport. The dynamics of weathering and erosion processes affecting badland areas are the principal factors controlling geomorphological development, and the extreme hydrological and sedimentological responses of badlands are the main effects of such morphologies. From a hydrological point of view, badlands increase water production, and flood frequency relative to neighbouring areas; from a sedimentological point of view, suspended sediment transport from badland areas can reach amounts two or three orders of magnitude higher than other nearby environments. Given these results, possible responses of badland dynamics to altered hydroclimatic regime are briefly discussed. [ABSTRACT FROM AUTHOR]