1. Rapid condensation of the first Solar System solids
- Author
-
Emmanuel Jacquet, Johan Villeneuve, Maxime Piralla, Marc Chaussidon, Yves Marrocchi, Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ANR-18-CE31-0010,CASSYSS,Chronologie et origine des premiers solides dans le jeune Système Solaire(2018), Institut de Physique du Globe de Paris (IPGP), and Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Solar System ,Materials science ,Silicon ,protoplanetary disk ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,chemistry.chemical_element ,engineering.material ,010502 geochemistry & geophysics ,Protoplanetary disk ,01 natural sciences ,meteorites ,Earth, Atmospheric, and Planetary Sciences ,Chondrite ,0103 physical sciences ,010303 astronomy & astrophysics ,isotopes ,0105 earth and related environmental sciences ,Multidisciplinary ,Olivine ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Isotope ,condensation ,Meteorite ,chemistry ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Chemical physics ,Physics::Space Physics ,Physical Sciences ,engineering ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Significance Combined O, Si, Mg isotopic measurements of amoeboid olivine aggregates allow the individual condensation timescales of a typical set of the first Solar System solids to be estimated. Our results indicate formation over days or weeks, much faster than could be inferred from the secular evolution of the Solar protoplanetary disk. The oldest solids of the Solar System thus bear witness to a turbulent disk with strong thermal heterogeneities., Chondritic meteorites are composed of primitive components formed during the evolution of the Solar protoplanetary disk. The oldest of these components formed by condensation, yet little is known about their formation mechanism because of secondary heating processes that erased their primordial signature. Amoeboid Olivine Aggregates (AOAs) have never been melted and underwent minimal thermal annealing, implying they might have retained the conditions under which they condensed. We performed a multiisotope (O, Si, Mg) characterization of AOAs to constrain the conditions under which they condensed and the information they bear on the structure and evolution of the Solar protoplanetary disk. High-precision silicon isotopic measurements of 7 AOAs from weakly metamorphosed carbonaceous chondrites show large, mass-dependent, light Si isotope enrichments (–9‰ < δ30Si < –1‰). Based on physical modeling of condensation within the protoplanetary disk, we attribute these isotopic compositions to the rapid condensation of AOAs over timescales of days to weeks. The same AOAs show slightly positive δ25Mg that suggest that Mg isotopic homogenization occurred during thermal annealing without affecting Si isotopes. Such short condensation times for AOAs are inconsistent with disk transport timescales, indicating that AOAs, and likely other high-temperature condensates, formed during brief localized high-temperature events.
- Published
- 2019