1. Huntingtin contains an ubiquitin-binding domain and regulates lysosomal targeting of mitochondrial and RNA-binding proteins
- Author
-
Fote, Gianna M, Eapen, Vinay V, Lim, Ryan G, Yu, Clinton, Salazar, Lisa, McClure, Nicolette R, McKnight, Jharrayne, Nguyen, Thai B, Heath, Marie C, Lau, Alice L, Villamil, Mark A, Miramontes, Ricardo, Kratter, Ian H, Finkbeiner, Steven, Reidling, Jack C, Paulo, Joao A, Kaiser, Peter, Huang, Lan, Housman, David E, Thompson, Leslie M, and Steffan, Joan S
- Subjects
Biochemistry and Cell Biology ,Biological Sciences ,Rare Diseases ,Neurosciences ,Brain Disorders ,Genetics ,Orphan Drug ,Neurodegenerative ,Huntington's Disease ,2.1 Biological and endogenous factors ,1.1 Normal biological development and functioning ,Neurological ,Huntingtin Protein ,Lysosomes ,RNA-Binding Proteins ,Humans ,Ubiquitin ,Mitochondria ,Autophagy ,Animals ,Mitochondrial Proteins ,Mice ,Protein Binding ,Huntington Disease ,Peptides ,Huntingtin ,RNA-binding proteins ,autophagy ,ubiquitin ,ubiquitin-binding domain - Abstract
Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the HTT gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin. We find that HTT interacts directly with ubiquitin in vitro. Tandem affinity purification was used to identify ubiquitinated and ubiquitin-associated proteins that copurify with a HTT N-terminal fragment under basal conditions. Copurification is enhanced by HTT polyQ expansion and reduced by mimicking HTT serine 421 phosphorylation. The identified HTT-interacting proteins include RNA-binding proteins (RBPs) involved in mRNA translation, proteins enriched in stress granules, the nuclear proteome, the defective ribosomal products (DRiPs) proteome and the brain-derived autophagosomal proteome. To determine whether the proteins interacting with HTT are autophagic targets, HTT knockout (KO) cells and immunoprecipitation of lysosomes were used to investigate autophagy in the absence of HTT. HTT KO was associated with reduced abundance of mitochondrial proteins in the lysosome, indicating a potential compromise in basal mitophagy, and increased lysosomal abundance of RBPs which may result from compensatory up-regulation of starvation-induced macroautophagy. We suggest HTT is critical for appropriate basal clearance of mitochondrial proteins and RBPs, hence reduced HTT proteostatic function with mutation may contribute to the neuropathology of HD.
- Published
- 2024