1. Vitamin E alleviates glyphosate-based herbicide-induced progesterone secretion inhibition and oxidative stress increase in chicken primary granulosa cells
- Author
-
Mathias Fréville, Ophélie Bernardi, Christelle Ramé, Pascal Froment, and Joëlle Dupont
- Subjects
glyphosate-based Herbicide ,endocrine disruptor ,poultry ,steroidogenesis ,progesterone ,Animal culture ,SF1-1100 - Abstract
ABSTRACT: Glyphosate-based herbicides (GBH) are the most extensively used herbicides worldwide. Despite a presumed nondangerousness for animals, several studies reported negative effects after a GBH exposure in several animal models including birds, notably on reproductive functions. Several studies concerning the advantages of Vitamin E (VE) for antioxidant activity but also growth and reproduction have been reported in birds. However, it remains unclear whether VE could alleviate the negative effect of GBHs on chicken ovarian cells. Here we exposed chicken primary granulosa cells (GCs) from F1 and F3/4 follicles to growing doses of GBH (0.036, 0.36, 3.6, and 36 gly eq/L), with or without VE supplementation (1 mg/L) and investigated cell viability, proliferation, oxidative stress and steroidogenesis. GBH exposure did not affect F1 and F3 GCs viability but it increased cell proliferation only in F1 GCs and this effect was not altered by VE. In both F1 and F3/4 GCs, GBH exposure increased total oxidant status (TOS), reduced total antioxidant status (TAS) and consequently increased index of oxidative stress (OSI) in dose dependent manner. This latter effect for GBH 36 mg eq gly/L was totally abolished in response to VE. In both F1 and F3/4 GCs, GBH exposure reduced progesterone secretion in a dose dependent manner and this effect with GBH 0.36 and 1.8 mg eq glyphosate/L was alleviated by VE. However, we did not observe any effect of GBH and VE on the gene expression of several components of the steroidogenesis process. Taken together, these results show that GBH may have endocrine disruptor effects, and that these effects might be alleviated by antioxidant VE supplementation.
- Published
- 2024
- Full Text
- View/download PDF