1. Preparation of Gradient Polyurethane and Its Performance for Flexible Sensors
- Author
-
Chuanqi Ning, Depeng Gong, Lili Wu, Wanyu Chen, and Chaocan Zhang
- Subjects
polyurethane ,gradient ,flake silver powder ,composite ,sensors ,Organic chemistry ,QD241-441 - Abstract
Flexible sensors are prone to the problems of slow recovery rate and large residual strain in practical use. In this paper, a polyurethane functional composite with a gradient change in elastic modulus is proposed as a flexible sensor to meet the recovery rate and residual strain without affecting the motion. Different hard and soft segment ratios are used to synthesize a gradient polyurethane structure. The conductive percolation threshold was obtained between 45 wt% and 50 wt% of flake silver powder. Both gradient polyurethane and gradient polyurethane composites demonstrated that gradient materials can increase the recovery rate and reduce residual strain. The gradient polyurethane composites had a tensile strength of 3.26 MPa, an elastic modulus of 2.58 MPa, an elongation at break of 245%, a sensitivity coefficient of 1.20 at 0–25% deformation, a sensitivity coefficient of 11.38 at 25–75% deformation, a rate of recovery of 1.95 s at a time, and a resistance to fatigue (over 1000 cycles at a fixed strain of 20% showed a stable electrical response). The sensing performance under different cyclic strain frequencies was also investigated. The process has practical applications in the field of wearable skin motion and health monitoring.
- Published
- 2024
- Full Text
- View/download PDF