1. Dextran-Coated Latex Nanoparticles via Photo-RAFT Mediated Polymerization Induced Self-Assembly
- Author
-
Brahim Nomeir, Jean-Luc Six, Malika Ouldali, Khalid Ferji, Ana Andreea Arteni, Valeria Lizeth Romero Castro, Laboratoire de Chimie Physique Macromoléculaire (LCPM), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell [Gif-sur-Yvette] (I2BC), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and ANR-18-CE06-0002,GlyNanEP,Elaboration de glyco-nanoobjets via un procédé respectueux de l'environnement(2018)
- Subjects
photo-RAFT polymerization ,Polymers and Plastics ,Organic chemistry ,Nanoparticle ,02 engineering and technology ,Degree of polymerization ,010402 general chemistry ,Methacrylate ,01 natural sciences ,Article ,chemistry.chemical_compound ,iniferter ,PISA ,latex nanoparticle ,emulsion ,dispersion ,graft copolymer ,drug delivery ,textile ,paint ,QD241-441 ,Amphiphile ,Copolymer ,Chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Dextran ,Polymerization ,Chemical engineering ,Self-assembly ,0210 nano-technology - Abstract
Polysaccharide coated nanoparticles represent a promising class of environmentally friendly latex to replace those stabilized by small toxic molecular surfactants. We report here an in situ formulation of free-surfactant core/shell nanoparticles latex consisting of dextran-based diblock amphiphilic copolymers. The synthesis of copolymers and the immediate latex formulation were performed directly in water using a photo-initiated reversible addition fragmentation chain transfer-mediated polymerization induced self-assembly strategy. A hydrophilic macromolecular chain transfer-bearing photosensitive thiocarbonylthio group (eDexCTA) was first prepared by a modification of the reducing chain end of dextran in two steps: (i) reductive amination by ethylenediamine in the presence of sodium cyanoborohydride, (ii) then introduction of CTA by amidation reaction. Latex nanoparticles were then formulated in situ by chain-extending eDexCTA using 2-hydroxypropyl methacrylate (HPMA) under 365 nm irradiation, leading to amphiphilic dextran-b-poly(2-hydroxypropyl methacrylate) diblock copolymers (DHX). Solid concentration (SC) and the average degree of polymerization - Xnˉ- of PHPMA block (X) were varied to investigate their impact on the size and the morphology of latex nanoparticles termed here SCDHX. Light scattering and transmission electron microscopy analysis revealed that SCDHX form exclusively spherical nano-objects. However, the size of nano-objects, ranging from 20 nm to 240 nm, increases according to PHPMA block length.
- Published
- 2021
- Full Text
- View/download PDF