1. A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments
- Author
-
David Rengel, Nicolas B. Langlade, Philippe Grieu, Marie-Laure Martin-Magniette, Marion Laporte, Sébastien Carrère, Patrick Vincourt, Jérôme Gouzy, Pierre Maury, Didier Varès, Sandrine Balzergue, Sandrine Arribat, Thibaut Hourlier, Unité mixte de recherche interactions plantes-microorganismes, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique (CNRS), Unité de recherche en génomique végétale (URGV), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), AGroécologie, Innovations, teRritoires (AGIR), Institut National de la Recherche Agronomique (INRA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Mathématiques et Informatique Appliquées (MIA-Paris), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Langlade, Nicolas, AgroParisTech (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
0106 biological sciences ,Water resources ,Leaves ,Microarrays ,[SDV]Life Sciences [q-bio] ,lcsh:Medicine ,Plant Science ,01 natural sciences ,[SHS]Humanities and Social Sciences ,Gene Expression Regulation, Plant ,Molecular Cell Biology ,Plant Genomics ,Gene Regulatory Networks ,water-stress ,helianthus-annuus ,[MATH]Mathematics [math] ,lcsh:Science ,Transpiration ,Oligonucleotide Array Sequence Analysis ,Cellular Stress Responses ,2. Zero hunger ,0303 health sciences ,Multidisciplinary ,Systems Biology ,food and beverages ,abscisic-acid ,Signaling in Selected Disciplines ,Environment, Controlled ,Sunflower ,Adaptation, Physiological ,Droughts ,Genetic networks ,Phenotype ,Plant Physiology ,[SDE]Environmental Sciences ,Helianthus ,proline accumulation ,signal transduction ,Research Article ,arabidopsis-thaliana ,osmotic adjustment ,jasmonic acid ,abiotic stress ,differential expression ,Genotype ,Cellular stress responses ,Drought tolerance ,Biology ,03 medical and health sciences ,Plant Signaling ,Botany ,Helianthus annuus ,Genetic variation ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,[INFO]Computer Science [cs] ,Genetic variability ,Ecosystem ,030304 developmental biology ,Analysis of Variance ,Models, Genetic ,lcsh:R ,Genetic Variation ,Water ,Computational Biology ,Phenotypic trait ,15. Life on land ,biology.organism_classification ,Amélioration des plantes ,Gene regulation ,Evolutionary biology ,Plant Biotechnology ,lcsh:Q ,Gene expression ,Plant resistance to abiotic stress ,Transcriptome ,010606 plant biology & botany - Abstract
International audience; Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions.
- Published
- 2012
- Full Text
- View/download PDF