1. Temperature affects the host hematological and cytokine response following experimental ranavirus infection in red-eared sliders (Trachemys scripta elegans).
- Author
-
Rayl JM and Allender MC
- Subjects
- Animals, Turtles virology, Cytokines metabolism, Hematologic Tests, Host Microbial Interactions, Ranavirus physiology, Temperature, Turtles blood, Turtles metabolism
- Abstract
Pathogen-host interactions are important components of epidemiological research, but are scarcely investigated in chelonians. Red-eared sliders (Trachemys scripta elegans), are recognized as a model for frog virus-3 infection (FV3), a ranavirus in the family Iridoviridae that infects multiple classes of ectothermic vertebrates. Previous challenge studies observed differences in disease outcome based on environmental temperature in this species, but the host response was minimally evaluated. We challenged red-eared sliders with an FV3-like ranavirus at both 28°C and 22°C. We monitored several host response variables for 30 days, including: survival (binary outcome and duration), clinical signs, total and differential leukocytes, and select cytokine transcription in the buffy coat (IL-1β, TNFα, IFYg, IL-10). After 30 days, 17% of challenged turtles survived at 28°C (Median survival time [MST]: 15 days, range: 10-30 days) and 50% survived (MST: 28.5 days, range: 23-30 days) at 22°C (range 23-30 days). The most common clinical signs were injection site swelling, palpebral swelling, and lethargy. The heterophil/lymphocyte ratio at 22°C and interleukin-1 beta (IL1β) transcription at both 22°C and 28°C were significantly greater on days 9, 16, and 23 in FV3 challenged groups. Tumor necrosis factor alpha and interleukin-10 were transcribed at detectable levels, but did not display significant differences in mean relative transcription quantity over time. Overall, evidence indicates an over-robust immune response leading to death in the challenged turtles. FV3 remains a risk for captive and free-ranging chelonian populations, and insight to host/pathogen interaction through this model helps to elucidate the timing and intensity of the host response that contribute to mortality., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF